RMO-1991

1. Let P be an interior point of a triangle ABC and AP, BP, CP meet the sides BC, CA, AB in D, E, F respectively. Show that

$$\frac{AP}{PD} = \frac{AF}{FB} + \frac{AE}{EC}.$$

2. If a, b, c and d are any 4 positive real numbers, then prove that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a} \ge 4.$$

- 3. A four-digit number has the following properties :
 - (a) it is a perfect square,
 - (b) its first two digits are equal to each other,
 - (c) its last two digits are equal to each other.

Find all such four-digit numbers.

- 4. There are two urns each containing an arbitrary number of balls. Both are non-empty to begin with. We are allowed two types of operations:
 - (a) remove an equal number of balls simultaneously from the urns, and
 - (b) double the number of balls in any one of them.

Show that after performing these operations finitely many times, both the urns can be made empty.

- 5. Take any point P_1 on the side BC of a triangle ABC and draw the following chain of lines: P_1P_2 parallel to AC (P_2 on AB), P_2P_3 parallel to BC, P_3P_4 parallel to AB, P_4P_5 parallel to CA, and P_5P_6 parallel to BC. Here P_2 , P_5 lie on AB; P_3 , P_6 lie on CA; and P_4 on BC. Show that P_6P_1 is parallel to AB.
- 6. Find all integer values of a such that the quadratic expression

$$(x+a)(x+1991)+1$$

can be factored as a product (x+b)(x+c) where b and c are integers.

- 7. Prove that $n^4 + 4^n$ is composite for all integer values of n greater than 1.
- 8. The 64 squares of an 8 × 8 chessboard are filled with positive integers in such a way that each integer is the average of the integers on the neighbouring squares. (Two squares are neighbours if they share a common edge or a common vertex. Thus a square can have 8, 5 or 3 neighbours depending on its position). Show that all the 64 integer entries are in fact equal.